
Article #15868: dBASE Expression Indexes: A Primer
 Technical Information Database

TI868D.txt dBASE Expression Indexes: A Primer
Category :Database Programming
Platform :All
Product :Delphi All

Description:
Indexes for dBASE tables may be based on the values from a single
field, unmodified, or on an expression. Index expressions, unique
to dBASE indexes, may be composed of multiple fields,
modifications of field values, or combinations of these. The
expression for a dBASE expression index is created by using dBASE
functions and syntax to concatenate multiple fields or to perform
the modifications of field values for fields included in the
index expressions.

Two section are included at the end of this technical article
which describe the mechanics of creating dBASE expression
indexes, one applicable to doing this in the Database Desktop
utility and the other for including this capability in Delphi
applications.

Expression Indexes Based On Multiple Fields
===

dBASE functions are available for use in Delphi or the Database
Desktop for the express use in index expressions, and then only
in conjunction with dBASE indexes. That is, you cannot use dBASE
functions or syntax to build an index expression for a Paradox or
Local InterBase Server (LIBS) table. Nor can dBASE functions be
used in Delphi programming. They are only available for dBASE
expression indexes. The dBASE functions and syntax that can be
used for expression indexes are provided by the Borland Database
Engine (BDE) Dynamic Linked Library (DLL) file IDDBAS01.DLL.

When creating a dBASE index that is to be based on the values
from two or more fields in the table for which the index is being
created, the two or more fields are concatenated (connected
together) in a manner similar to how String type values are
concatenated in Delphi syntax: the "+" operator. For example, the
expression needed to create an index that orders first on a
LastName field and then on a FirstName field would be:

 LastName + FirstName

Unlike in dBASE itself, such indexes that are based on multiple
fields are limited to using just those fields in the one table.
dBASE allows the creation of indexes based on multiple fields
contained in different tables. This is possible only by having
the other table open at the time the index is created or when the
table containing the index is used.

With multi-field indexes for other table types (e.g., Paradox and
InterBase), the multiple fields are delimited by the semi-colon
(;), as in:

 LastName;FirstName

In dBASE expression indexes that concatenate multiple fields, an

actual expression is used:

 LastName + FirstName

When creating index expressions that concatenate two or more
fields, all of the fields included in the index expression must
be of the same data type. Additionally, if they are to be
concatenated instead of added together, the fields must all be of
String type. For example, given two Integer type fields, Value1
and Value2, the index expression...

 Value1 + Value2

...would not cause an error. But then, neither would it
concatenate the two field values; it would add them together.
Thus, if Value1 for a given record contained 4 and Value2 5, the
resulting index node would be an Integer value of 9, not a String
concatenation "45".

If fields to be included in an expression index are not of String
type, they must be converted. Here are some dBASE functions to
convert various data types to String for purposes of creating
index expressions:

 STR([, [,]])
 Converts from either Float or Numeric dBASE types to Character
(String)

 DTOS()
 Converts Date value to Character, format YYYYMMDD

 MLINE(,)
 Extracts a single line from a memo field as a Character value

Another consideration in creating indexes based on the
concatenation of multiple field is the maximum allowable length
of the index value. The value returned by an index expression may
not exceed 100 characters. This is a limit on the length of the
value returned by the expression, not on the length of the
expression itself. For example, you cannot index on the
concatenation of two fields that both have a length of 255
characters.

Expression Indexes Based On Modifications Of Field Values
===

In addition to creating indexes based on the concatenation of two
or more field values, it is also possible to construct an index
that is based on a modification of a field value. Examples of
this include indexing on just the first three characters of a
String type field, on just the year and month from a Date field,
indexing on a contantenation of a String and Date field such that
the ordering of the String field is ascending but the Date
descending, and even indexing on Boolean field values.

Creating indexes that are based on modifications of field values
requires at least a working knowledge of dBASE functions and
syntax -- because the process uses dBASE, and not Delphi,
functions and syntax. The dBASE function SUBSTR() extracts a
substring of a String value. The Delphi equivalent for this dBASE
function is Copy. But, of these two functions that serve the same
purpose, only SUBSTR() may be used in dBASE index expressions.

To use dBASE functions in dBASE index expressions, simply include
the function wherever an index expression is called for, using
the appropriate dBASE syntax for the function, along with a
reference to the name(s) of the field(s) used in the function.
For example, an index expression based on only the last three
characters of a String type field called Code, that is 20
characters long, would be:

 RIGHT(Code, 3)

Caution should be used in constructing dBASE index expressions
that modify field values to ensure that the resulting expression
would return a value of a consistent length for every record in
the table. For instance, the dBASE TRIM() function removes the
trailing blanks (ASCII decimal 32) from a String type value. If
this were used in conjunction with concatenating two String
fields where the field does not contain values of the same length
for all records, the value resulting from the expression will not
be the same for all records. Case in point, an index expression
based on the concatenation of a LastName and a FirstName field,
where the TRIM() function is applied to the LastName field:

 TRIM(LastName) + FirstName

This expression would not return values of a consistent length
for all records. If the LastName and FirstName fields contained
the values...

 LastName FirstName
 -------- ---------
 Smith Jonas
 Wesson Nancy

...the result of applying the index expression above would be:

 SmithJonas
 WessonNancy

As can be seen, the length of the value for the first record
would be 10 characters, while that for the second 11 characters.
The index nodes created for this index expression would be based
on the field values for the first record encountered. This would
result in an index node 10 characters long being applied to the
field values for all record. In this example, that would result
in the truncation of the expression value for the second record
to "WessonNanc". This would subsequently cause searches based on
the full field value to fail.

The solution to this dilemma would be to not use the TRIM()
function so that the full length of the LastName field, including
padding from the trailing spaces, is used. In indexes that use
the IIF() function to order by one field or another, based on the
evaluation of a logical expression in the IIF(), if the two
fields are of different lengths, the shorter field would need to
be padded with spaces to make it the same length as the longer
field. For example, assuming an index that uses the IIF()
function to index either on a Company or a Name field, based on
the contents of Category field, and where the Company field is 40
characters long but the Name field is 25 characters long, the
Name field would need to be padded with 15 spaces; accomplished
with the dBASE function SPACE(). That index expression would then
be:

 IIF(Category = "B", Company, Name + SPACE(15))

Searches And dBASE Expression Indexes
=====================================

dBASE expression indexes are exceptions to the norm in how they
are handled by Delphi and the BDE as opposed to how multiple
field indexes for other table types are handled.

This puts such dBASE indexes into a separate class. Handling of
such indexes by Delphi and the BDE is different than those for
other table types. One of these differences is that not all
index-based searching using Delphi syntax can be used with these
dBASE expression indexes. The FindKey, FindNearest, and GotoKey
methods of the TTable component cannot be used with expression
indexes. If an attempt to use FindKey is made, this will result
in the error message: "Field index out of range." If the GotoKey
method is tried, this error message may occur or the record
pointer may just not move (indicating the search value was not
found). Only the GotoNearest method may be used with expression
indexes. Even then, the GotoNearest method may not work with some
index expressions. Experimentation will be needed to see whether
the GotoNearest method will work with a given index expression.

Filtering With dBASE Expression Indexes
=======================================

As with index-based searches, dBASE expression indexes present
some exceptions when using Delphi filtering.

With an expression index active, the SetRange method of the
TTable component will produce the error: "Field index out of
range." However, with the same expression index active, the
SetRangeStart and SetRangeEnd methods will successfully filter
the data set.

For example, with an expression index concatenating a LastName
and a FirstName field active, the code below using the FindKey
method (intended to filter to just those records where the first
character of the LastName field is "S") will fail with an error:

 begin
 Table1.SetRange(['S'], ['Szzz'])
 end;

Whereas, the code below, with the same expression index active
and filtering on the same LastName field, will successfully
filter the data and not incur an error:

 begin
 with Table1 do begin
 SetRangeStart;
 FieldByName('LastName').AsString := 'S';
 SetRangeEnd;
 FieldByName('LastName').AsString := 'Szzz';
 ApplyRange;
 end;
 end;

And, as is the case with index-based searches, with filtering,
success of a filtering attempt will also be dependent on the
index expression. The use of the SetRangeStart and SetRangeEnd
methods in the preceeding example worked with an index that

simply concatenated two String type fields. But if the expression
for the index was instead based conditionally on one or the other
fields through use of the IIF() function, the same filtering
routine would fail (although without an error).

Some Handy dBASE Index Expressions
==================================

Here are some handy dBASE index expressions. Some are readily
apparent in the intended purpose, others are more arcane.

Character field ascending and Date field descending

With a Character field called Name and a Date field OrdDate:

 Name + STR(OrdDate - {12/31/3099}, 10, 0)

Character field ascending and Numeric (or Float) field descending

With a Character field called Company and a Numeric field Amount
(the Amount field being 9 digits wide with two decimal places):

 Company + STR(Amount - 999999.99, 9, 2)

Ordering by a Logical field

To have True values appear before False values for a Logical
field called Paid:

 IIF(Paid, "A", "Z")

Two Numeric (or Float) fields

Assuming two Numeric fields with widths of five and two decimal
places, the first field named Price and the second Quantity:

 STR(Price, 5, 2) + STR(Quantity, 5, 2)

Ordering by one field of two, depending on a logical condition
--

Assuming that if the Company field is empty, the record should be
included in the sort order by the Name field (instead of an empty
Company field).

 IIF(Company = " ", Name, Company)

Ordering by the names of months in a Character field
--

Assuming a field containing the names of the months ("Jan," "Feb"
etc.) to put the records in proper month order (field named M):

 IIF(M="Jan", 1, IIF(M="Feb", 2, IIF(M="Mar", 3, IIF(M="Apr", 4,
 IIF(M="May", 5, IIF(M="Jun", 6, IIF(M="Jul", 7, IIF(M="Aug", 8,
 IIF(M="Sep", 9, IIF(M="Oct", 10, IIF(M="Nov", 11, 12)))))))))))

(The above is a single expression line, broken into multiple
lines here due to page width.)

Ordering by the first line of a memo field
--

For a memo field named Notes:

 MLINE(Notes, 1)

Ordering by the middle three characters in a nine character long
field
--

For a nine character long field called StockNo:

 SUBSTR(StockNo, 4, 3)

Creating dBASE Expression Indexes In Database Desktop
===

In the Database Desktop utility, indexes may be created for a
table either duting the process of creating a new table or by
restructuring an existing table. In both cases, the Define Index
dialog is used to create one or more indexes for the table used.

To get to the Create Index dialog while creating a new table, in
the Create dBASE Table dialog (showing the structure), from the
Table Properties listbox select "Indexes" and click the Define
button.

To get to the Create Index dialog to create an index for an
existing table, select Utilities|Restructure, select the table
file from the Select File dialog, and in the Restructure dBASE
Table dialog (showing the table structure) from the Table
Properties listbox select "Indexes" and click the Define button.

Once in the Create Index dialog, expression indexes can be
created by clicking the Expression Index button and entering the
expression to be used in the Expression Index entry field. To
assist in this process, you can double-click on a field name in
the Field List listbox and that field name will be inserted into
the Index Expression entry field at the current insertion point
(caret position).

Once the index expression has been entered, click the OK button.
Enter the name of the new index tag in the Index Tag Name entry
field on the Save Index As dialog and click OK. (Remember, dBASE
index tag names cannot exceed ten characters in length and must
abide by the normal dBASE naming conventions.)

Creating dBASE Expression Indexes In Delphi Applications
==

dBASE indexes can be created programmatically in Delphi
applications, either as a new table is being created (CreateTable
method of the TTable component) or by adding an index to an
existing table.

Another peculiarity of the dBASE expression index and the BDE is
that the table must exist prior to creating an expression index.
Thus, while single-field indexes may be created as the table is
created by populating TIndexDef objects, this cannot be done with
expression indexes. Expression indexes can only be added to a
newly created table after the call is made to the CreateTable

method, using the AddIndex method. The Options parameter of the
AddIndex method must include the index option value ixExpression.
This index option is unique to dBASE indexes, and should only be
used with dBASE expression indexes. For example:

 with Table1 do begin
 Active := False;
 DatabaseName := 'Delphi_Demos';
 TableName := 'CustInfo';
 TableType := ttdBASE;
 with FieldDefs do begin
 Clear;
 Add('LastName', ftString, 30, False);
 Add('FirstName', ftString, 20, False);
 end;
 CreateTable;
 AddIndex('FullName', 'LastName + FirstName', [ixExpression]);
 end;

Learning More About dBASE Functions And Syntax
==

Only dBASE functions and syntax that apply to data manipulation
can be used to construct a dBASE expression index. However, it is
beyond the scope of this technical article to fully list and
describe all of these functions. To learn more about dBASE data
manipulation functions, the user is advised to consult the dBASE
Language Reference manual or one of the many third-party dBASE
books.

Reference:

7/16/98 4:33:55 PM

Last Modified: 01-SEP-99

