Article#15868: dBASE Expression Indexes: A Primer

Techni cal | nformati on Dat abase

T1868D.txt dBASE Expression | ndexes: A Prinmer
Cat egory : Dat abase Progranm ng

Platform :Al

Pr oduct : Del phi Al

Descri ption:

I ndexes for dBASE tables nmay be based on the values froma single
field, unnodified, or on an expression. |Index expressions, unique
to dBASE i ndexes, may be conposed of nultiple fields,
nodi fi cations of field values, or conbinations of these. The
expression for a dBASE expression index is created by using dBASE
functions and syntax to concatenate nultiple fields or to perform
the nodifications of field values for fields included in the

i ndex expressions.

Two section are included at the end of this technical article
whi ch descri be the nechanics of creating dBASE expression

i ndexes, one applicable to doing this in the Database Desktop
utility and the other for including this capability in Del phi
applications.

Expressi on I ndexes Based On Multiple Fields

dBASE functions are available for use in Del phi or the Database
Desktop for the express use in index expressions, and then only
in conjunction with dBASE i ndexes. That is, you cannot use dBASE
functions or syntax to build an index expression for a Paradox or
Local InterBase Server (LIBS) table. Nor can dBASE functions be
used in Del phi programm ng. They are only avail able for dBASE
expressi on i ndexes. The dBASE functions and syntax that can be
used for expression indexes are provided by the Borl and Dat abase
Engi ne (BDE) Dynamic Linked Library (DLL) file | DDBASO1. DLL.

When creating a dBASE index that is to be based on the val ues
fromtwo or nore fields in the table for which the index is being
created, the two or nore fields are concatenated (connected
together) in a manner simlar to how String type values are
concatenated in Del phi syntax: the "+" operator. For exanple, the
expressi on needed to create an index that orders first on a

Last Name field and then on a FirstName field would be:

Last Nane + FirstNane

Unlike in dBASE itself, such indexes that are based on nultiple
fields are limted to using just those fields in the one table.
dBASE all ows the creation of indexes based on nmultiple fields
contained in different tables. This is possible only by having
the other table open at the tinme the index is created or when the
tabl e containing the index is used.

Wth multi-field indexes for other table types (e.g., Paradox and
InterBase), the nultiple fields are delimted by the sem -col on
(;), as in:

Last Nane; Fi r st Nane

I n dBASE expression indexes that concatenate nmultiple fields, an

actual expression is used:
Last Nane + FirstNane

When creating index expressions that concatenate two or nore
fields, all of the fields included in the index expression nust
be of the sanme data type. Additionally, if they are to be

concat enated i nstead of added together, the fields nust all be of
String type. For exanple, given two Integer type fields, Valuel
and Val ue2, the index expression..

Val uel + Val ue2

...would not cause an error. But then, neither would it
concatenate the two field values; it would add them together.
Thus, if Valuel for a given record contained 4 and Value2 5, the
resulting index node would be an Integer value of 9, not a String
concat enati on "45"

If fields to be included in an expression index are not of String
type, they nust be converted. Here are sonme dBASE functions to
convert various data types to String for purposes of creating

i ndex expressions:

STRC [, [, 11)
Converts fromeither Float or Nuneric dBASE types to Character

(String)

DTOS()
Converts Date value to Character, format YYYYMVDD

M.l NE(,)
Extracts a single line froma nmemo field as a Character val ue

Anot her consideration in creating i ndexes based on the
concatenation of nultiple field is the maxi num all owabl e | ength
of the index value. The value returned by an index expression may
not exceed 100 characters. This is a limt on the length of the
val ue returned by the expression, not on the length of the
expression itself. For exanple, you cannot index on the
concatenation of two fields that both have a | ength of 255
characters.

Expressi on I ndexes Based On Modifications OF Field Val ues

In addition to creating i ndexes based on the concatenation of two
or nore field values, it is also possible to construct an index
that is based on a nodification of a field value. Exanples of
this include indexing on just the first three characters of a
String type field, on just the year and nonth froma Date field,

i ndexi ng on a contantenation of a String and Date field such that
the ordering of the String field is ascending but the Date
descendi ng, and even indexing on Bool ean field val ues.

Creating indexes that are based on nodifications of field val ues
requires at |east a working know edge of dBASE functions and
syntax -- because the process uses dBASE, and not Del phi
functions and syntax. The dBASE function SUBSTR() extracts a
substring of a String value. The Del phi equivalent for this dBASE
function is Copy. But, of these two functions that serve the sane
purpose, only SUBSTR() mmy be used in dBASE i ndex expressions.

To use dBASE functions in dBASE i ndex expressions, sinply include
the function wherever an index expression is called for, using
the appropriate dBASE syntax for the function, along with a
reference to the name(s) of the field(s) used in the function

For exanpl e, an index expression based on only the last three
characters of a String type field called Code, that is 20
characters | ong, would be:

Rl GHT(Code, 3)

Caution should be used in constructing dBASE i ndex expressions
that nodify field values to ensure that the resulting expression
woul d return a value of a consistent length for every record in
the table. For instance, the dBASE TRIM) function renpves the
trailing blanks (ASCII decinmal 32) froma String type value. If
this were used in conjunction with concatenating two String
fields where the field does not contain values of the sane |length
for all records, the value resulting fromthe expression will not
be the same for all records. Case in point, an index expression
based on the concatenation of a LastName and a FirstNane field,
where the TRIM) function is applied to the LastNane field:

TRI M Last Nane) + First Nane

Thi s expression would not return values of a consistent |ength
for all records. If the LastNanme and FirstNane fields contained
the val ues..

Last Nane Fir st Nane
Smth Jonas
Wesson Nancy

..the result of applying the index expression above woul d be:

Smi t hJonas
WessonNancy

As can be seen, the length of the value for the first record
woul d be 10 characters, while that for the second 11 characters.
The index nodes created for this index expression would be based
on the field values for the first record encountered. This would
result in an index node 10 characters long being applied to the
field values for all record. In this exanple, that would result
in the truncation of the expression value for the second record
to "WessonNanc". This woul d subsequently cause searches based on
the full field value to fail.

The solution to this dilenmm would be to not use the TRIM)
function so that the full length of the LastNane field, including
padding fromthe trailing spaces, is used. In indexes that use
the Il F() function to order by one field or another, based on the
eval uation of a logical expression in the IIF(), if the two
fields are of different lengths, the shorter field would need to
be padded with spaces to nake it the same |length as the |onger
field. For exanple, assum ng an index that uses the Il1F()
function to index either on a Conpany or a Nanme field, based on
the contents of Category field, and where the Conpany field is 40
characters long but the Nane field is 25 characters |long, the
Nane field would need to be padded with 15 spaces; acconplished
with the dBASE function SPACE(). That index expression would then
be:

Il F(Category = "B", Conpany, Nanme + SPACE(15))

Searches And dBASE Expression | ndexes

dBASE expression i ndexes are exceptions to the normin how they
are handl ed by Del phi and the BDE as opposed to how rultiple
field indexes for other table types are handl ed.

This puts such dBASE i ndexes into a separate class. Handling of
such indexes by Del phi and the BDE is different than those for
other table types. One of these differences is that not al

i ndex- based searching using Del phi syntax can be used with these
dBASE expressi on i ndexes. The FindKey, FindNearest, and GotoKey
met hods of the TTabl e conponent cannot be used with expression

i ndexes. If an attenpt to use FindKey is made, this will result
in the error nessage: "Field index out of range." |If the GotoKey
method is tried, this error nessage nay occur or the record

poi nter may just not nmove (indicating the search val ue was not
found). Only the GotoNearest nethod may be used with expression
i ndexes. Even then, the GotoNearest nethod may not work with sone
i ndex expressions. Experinmentation will be needed to see whether
the GotoNearest nethod will work with a given index expression

Filtering Wth dBASE Expression | ndexes

As with index-based searches, dBASE expression indexes present
some exceptions when using Del phi filtering.

Wth an expression index active, the Set Range net hod of the

TTabl e conponent will produce the error: "Field index out of
range." However, with the sane expression index active, the
Set RangeStart and Set RangeEnd net hods will successfully filter

the data set.

For exanple, with an expression index concatenating a LastNane
and a FirstNane field active, the code bel ow using the Fi ndKey
method (intended to filter to just those records where the first

character of the LastName field is "S") will fail with an error
begi n
Tabl el. SetRange(['S'], ['Szzz'])
end;

WWhereas, the code below, with the same expression index active
and filtering on the sane LastNanme field, will successfully
filter the data and not incur an error:

begi n
with Tablel do begin
Set RangeStart;

Fi el dByName(' Last Nane'). AsString :="'S';
Set RangeEnd;
Fi el dByName(' Last Name'). AsString := 'Szzz'
Appl yRange;

end;

end;

And, as is the case with index-based searches, with filtering,
success of a filtering attenpt will also be dependent on the

i ndex expression. The use of the SetRangeStart and Set RangeEnd
met hods in the preceeding exanple worked with an index that

sinply concatenated two String type fields. But if the expression
for the index was instead based conditionally on one or the other
fields through use of the Il F() function, the sane filtering
routine would fail (although wi thout an error).

Sonme Handy dBASE | ndex Expressions

Here are sonme handy dBASE i ndex expressions. Sonme are readily
apparent in the intended purpose, others are nore arcane.

Character field ascending and Date field descendi ng

Wth a Character field called Nane and a Date field OrdDate:
Name + STR(OrdDate - {12/31/3099}, 10, 0)

Character field ascending and Nunmeric (or Float) field descending

Wth a Character field called Conpany and a Nuneric field Anmount
(the Amount field being 9 digits wide with two deci mal places):

Conmpany + STR(Anpunt - 999999.99, 9, 2)

Ordering by a Logical field

To have True val ues appear before Fal se values for a Logical
field called Paid:

Il F(Paid, "A", "Z")

Two Nuneric (or Float) fields

Assuming two Nurmeric fields with widths of five and two deci nal
pl aces, the first field naned Price and the second Quantity:

STR(Price, 5, 2) + STR(Quantity, 5, 2)

Ordering by one field of two, depending on a |ogical condition

Assuming that if the Conpany field is enpty, the record should be
included in the sort order by the Nane field (instead of an enpty
Conpany field).

Il F(Conpany = , Nane, Conpany)

Ordering by the names of nmonths in a Character field

Assuming a field containing the nanes of the nmonths ("Jan," "Feb"
etc.) to put the records in proper nonth order (field naned M:

I'F(M="Jan", 1, IIF(M"Feb", 2, IIF(M"Mar", 3, IIF(M"Apr", 4,
I'TF(M="May", 5, I'IlF(M="Jun", 6, IIF(M"Jul", 7, Il1F(M"Aug", 8,
FTF(M="Sep”, 9, INIF(M="Cct", 10, IIF(M="Nov", 11, 12)))))))))))

(The above is a single expression line, broken into nultiple
lines here due to page wi dth.)

Ordering by the first line of a meno field

For a neno field nanmed Notes:
M.I NE(Not es, 1)

Ordering by the mddle three characters in a nine character |ong
field

For a nine character long field called StockNo:
SUBSTR(St ockNo, 4, 3)

Creating dBASE Expression | ndexes |In Database Desktop

In the Dat abase Desktop utility, indexes may be created for a
table either duting the process of creating a new table or by
restructuring an existing table. In both cases, the Define |Index
dialog is used to create one or nore indexes for the table used.

To get to the Create Index dialog while creating a new table, in
the Create dBASE Tabl e dial og (showing the structure), fromthe
Tabl e Properties listbox select "Indexes" and click the Define
but t on.

To get to the Create Index dialog to create an index for an
existing table, select Uilities|Restructure, select the table
file fromthe Select File dialog, and in the Restructure dBASE
Tabl e dialog (showing the table structure) fromthe Table
Properties |istbox select "lIndexes" and click the Define button

Once in the Create Index dial og, expression indexes can be
created by clicking the Expression Index button and entering the
expression to be used in the Expression Index entry field. To
assist in this process, you can double-click on a field nane in
the Field List listbox and that field nanme will be inserted into
the I ndex Expression entry field at the current insertion point
(caret position).

Once the index expression has been entered, click the OK button
Enter the name of the new index tag in the Index Tag Nane entry
field on the Save Index As dialog and click OK (Remenmber, dBASE
i ndex tag nanmes cannot exceed ten characters in |l ength and nust
abi de by the nornmal dBASE nani ng conventions.)

Creati ng dBASE Expression |Indexes In Del phi Applications

dBASE i ndexes can be created programmatically in Del phi
applications, either as a newtable is being created (CreateTabl e
met hod of the TTabl e conponent) or by adding an index to an

exi sting table.

Anot her peculiarity of the dBASE expression index and the BDE is
that the table nmust exist prior to creating an expression index.
Thus, while single-field indexes nay be created as the table is
created by popul ati ng Tl ndexDef objects, this cannot be done with
expression i ndexes. Expression indexes can only be added to a
newly created table after the call is nmade to the CreateTable

met hod, using the Addl ndex method. The Options paraneter of the
Addl ndex nmet hod nust include the index option val ue i XExpression
This index option is unique to dBASE i ndexes, and should only be
used with dBASE expression indexes. For exanpl e:

with Tablel do begin

Active : = Fal se;
Dat abaseNane : = ' Del phi _Denps"';
Tabl eNanme := 'Custlnfo';

Tabl eType : = ttdBASE
with FieldDefs do begin
Cl ear;
Add(' Last Nane', ftString, 30, False);
Add(' FirstNane', ftString, 20, False);
end;
Creat eTabl e;
Addl ndex(' Ful | Nanme', 'LastNanme + FirstNanme', [ixExpression]);
end;

Lear ni ng More About dBASE Functions And Syntax

Only dBASE functions and syntax that apply to data mani pul ation
can be used to construct a dBASE expression index. However, it is
beyond the scope of this technical article to fully list and
describe all of these functions. To | earn nore about dBASE data
mani pul ation functions, the user is advised to consult the dBASE
Language Reference manual or one of the many third-party dBASE
books.

Ref er ence

7/ 16/ 98 4:33:55 PM

Last Modified: 01-SEP-99

