
Data File Header Structure for the
dBASE Version 7 Table File

Note: Unless prefaced by "0x", all numbers specified in the Description column of the following tables are
decimal.

1.1 Table File Header

n above is the last byte in the field descriptor array. The size of the array depends on the number of fields in

Byte Contents Description

0 1 byte

Valid dBASE for Windows table file, bits 0-2 indicate version number: 3 for dBASE
Level 5, 4 for dBASE Level 7.

Bit 3 and bit 7 indicate presence of a dBASE IV or dBASE for Windows memo file; bits
4-6 indicate the presence of a dBASE IV SQL table; bit 7 indicates the presence of
any .DBT memo file (either a dBASE III PLUS type or a dBASE IV or dBASE for
Windows memo file).

1-3 3 bytes
Date of last update; in YYMMDD format. Each byte contains the number as a binary.
YY is added to a base of 1900 decimal to determine the actual year. Therefore, YY has
possible values from 0x00-0xFF, which allows for a range from 1900-2155.

4-7 32-bit
number Number of records in the table. (Least significant byte first.)

8-9 16-bit
number Number of bytes in the header. (Least significant byte first.)

10-
11

16-bit
number Number of bytes in the record. (Least significant byte first.)

12-
13 2 bytes Reserved; filled with zeros.

14 1 byte Flag indicating incomplete dBASE IV transaction.

15 1 byte dBASE IV encryption flag.

16-
27 12 bytes Reserved for multi-user processing.

28 1 byte Production MDX flag; 0x01 if a production .MDX file exists for this table; 0x00 if
no .MDX file exists.

29 1 byte Language driver ID.

30-
31 2 bytes Reserved; filled with zeros.

32-
63 32 bytes Language driver name.

64-
67 4 bytes Reserved.

68-n 48 bytes
each Field Descriptor Array (see 1.2).

n+1 1 byte 0x0D stored as the Field Descriptor terminator.

n+2

See below
for
calculations
of size

Field Properties Structure

Page 1 of 5dBASE .DBF File Structure

06/03/2010http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm

the table file.

1. 2 Field Descriptor Array

(One for each field in the table)

1.3 Field Properties Structure

This contains a header describing the Field Properties array, followed by the actual array, followed by
property data. It is contained in the .DBF header and comes immediately after the Field Descriptor terminator
(See Table 1.1).

1.3.1 Standard Property and Constraint Descriptor Array

Byte Contents Description
0-31 32 bytes Field name in ASCII (zero-filled).

32 1 byte Field type in ASCII (B, C, D, N, L, M, @, I, +, F, 0 or G).

33 1 byte Field length in binary.

34 1 byte Field decimal count in binary.

35-
36 2 bytes Reserved.

37 1 byte Production .MDX field flag; 0x01 if field has an index tag in the production .MDX file; 0x00
if the field is not indexed.

38-
39 2 bytes Reserved.

40-
43 4 bytes Next Autoincrement value, if the Field type is Autoincrement, 0x00 otherwise.

44-
47 4 bytes Reserved.

Byte Contents Description

0-1 16-bit
number Number of Standard Properties.

2-3 16-bit
number Start of Standard Property Descriptor Array. (see 1.3.1)

4-5 16-bit
number Number of Custom Properties.

6-7 16-bit
number Start of Custom Property Descriptor Array. (see 1.3.2)

8-9 16-bit
number Number of Referential Integrity (RI) properties.

10-11 16-bit
number Start of RI Property Descriptor Array. (see 1.3.3)

12-13 16-bit
number

Start of data - this points past the Descriptor arrays to data used by the arrays - for
example Custom property names are stored here.

14-15 16-bit
number

Actual size of structure, including data (Note: in the .DBF this will be padded with
zeroes to the nearest 0x200, and may have 0x1A at the end). If the structure contains
RI data, it will not be padded.

16-n 15 bytes
each

Standard Property Descriptor Array (n = (15*number of standard properties) + 16). (see
1.3.1)

(n+1)-
m

14 bytes
each

Custom Property Descriptor Array (m = n+ 14*number of custom properties). (see
1.3.2)

(m+1)-
o

22 bytes
each RI Property Descriptor Array (o = m+ 22*number of RI properties). (see 1.3.3)

Page 2 of 5dBASE .DBF File Structure

06/03/2010http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm

1.3.2 Custom Property Descriptor Array

Byte Contents Description

0-1 16-bit
number

Generational number. More than one value may exist for a property. The current value is
the value with the highest generational number.

2-3 16-bit
number

Table field offset - base one. 01 for the first field in the table, 02 for the second field, etc.
Note: this will be 0 in the case of a constraint.

4 8-bit
number

Which property is described in this record:
01 Required
02 Min
03 Max
04 Default
06 Database constraint

5 1 byte

Field Type:
00 No type - constraint
01 Char
02 Numeric
03 Memo
04 Logical
05 Date
06 Float
08 OLE
09 Binary
11 Long
12 Timestamp
13 Double
14 AutoIncrement (not settable from the Inspector)

6 1 byte 0x00 if the array element is a constraint, 0x02 otherwise.

7-10 4 bytes Reserved

11-
12

16-bit
number

Offset from the start of this structure to the data for the property. The Required property
has no data associated with it, so it is always 0.

13-
14

16-bit
number

Width of database field associated with the property, and hence size of the data
(includes 0 terminator in the case of a constraint).

Byte Contents Description

0-1 16-bit
number

Generational number. More than one value may exist for a property. The current value is
the value with the highest generational number.

2-3 16-bit
number Table field offset - base one. 01 for the first field in the table, 02 for the second field, etc.

4 1 byte

Field Type
01 Char
02 Numeric
03 Memo
04 Logical
05 Date
06 Float
08 OLE
09 Binary
11 Long
12 Timestamp
13 Double
14 AutoIncrement (not settable from the Inspector)

Page 3 of 5dBASE .DBF File Structure

06/03/2010http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm

1.3.3 Referential Integrity Property Descriptor Array

(Foreign = in the other table, Local = in this table)

Property Data

For standard properties, everything is stored exactly as it is in the Table records. Custom property data is
stored as the Name string, followed immediately by the Value string, and a null terminator. The Constraint text
is stored as a null-terminated string.

Table Records

The records follow the header in the table file. Data records are preceded by one byte, that is, a space (0x20)
if the record is not deleted, an asterisk (0x2A) if the record is deleted. Fields are packed into records without
field separators or record terminators. The end of the file is marked by a single byte, with the end-of-file
marker, an OEM code page character value of 26 (0x1A).

5 1 byte Reserved

6-7 16-bit
number Offset from the start of this structure to the Custom property name.

8-9 16-bit
number Length of the Custom property name.

10-
11

16-bit
number Offset from the start of this structure to the Custom property data.

12-
13

16-bit
number Length of the Custom property data (does not include null terminator).

Byte Contents Description

0 8-bit number 0x07 if Master (parent), 0x08 if Dependent (child).

1-2 16-bit
number

Sequential number, 1 based counting. If this number is 0, this RI rule has been
dropped.

3-4 16-bit
number Offset of the RI rule name - 0 terminated.

5-6 16-bit
number Size of previous value.

7-8 16-bit
number Offset of the name of the Foreign Table - 0 terminated.

9-10 16-bit
number Size of previous value.

11 1 byte
Update & delete behaviour:
Update Cascade 0x10
Delete Cascade 0x01

12-
13

16-bit
number Number of fields in the linking key.

14-
15

16-bit
number Offset of the Local Table tag name - 0 terminated.

16-
17

16-bit
number Size of previous value.

18-
19

16-bit
number Offset of the Foreign Table tag name - 0 terminated.

20-
21

16-bit
number Size of previous value.

Page 4 of 5dBASE .DBF File Structure

06/03/2010http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm

Storage of dBASE Data Types

Except for autoincrement fields, all types are initialized to binary zeroes. In addition, any fields which have
been assigned a default property will contain the default value.

Binary, Memo, OLE Fields and .DBT Files

Binary, memo, and OLE fields store data in .DBT files consisting of blocks numbered sequentially (0, 1, 2,
etc.). SET BLOCKSIZE determines the size of each block. The first block in the .DBT file, block 0, is the .DBT
file header.

Each binary, memo, or OLE field of each record in the .DBF file contains the number of the block (in OEM
code page values) where the field's data actually begins. If a field contains no data, the .DBF file contains
blanks (0x20) rather than a number.

When data is changed in a field, the block numbers may also change and the number in the .DBF may be
changed to reflect the new location.

Symbol Data Type Description

B Binary, a
string

10 digits representing a .DBT block number. The number is stored as a string, right
justified and padded with blanks.

C Character All OEM code page characters - padded with blanks to the width of the field.

D Date 8 bytes - date stored as a string in the format YYYYMMDD.

N Numeric Number stored as a string, right justified, and padded with blanks to the width of
the field.

L Logical 1 byte - initialized to 0x20 (space) otherwise T or F.

M Memo, a
string

10 digits (bytes) representing a .DBT block number. The number is stored as a
string, right justified and padded with blanks.

@ Timestamp
8 bytes - two longs, first for date, second for time. The date is the number of days
since 01/01/4713 BC. Time is hours * 3600000L + minutes * 60000L + Seconds *
1000L

I Long 4 bytes. Leftmost bit used to indicate sign, 0 negative.

+ Autoincrement Same as a Long

F Float Number stored as a string, right justified, and padded with blanks to the width of
the field.

O Double 8 bytes - no conversions, stored as a double.

G OLE 10 digits (bytes) representing a .DBT block number. The number is stored as a
string, right justified and padded with blanks.

Page 5 of 5dBASE .DBF File Structure

06/03/2010http://www.dbase.com/Knowledgebase/INT/db7_file_fmt.htm

